Synthesis and Characterization of Novel Polyurethanes Based on 2,6-Bis(4-hydroxybenzylidene) Cyclohexanone Hard Segments

A. V. Raghu, G. Anita, Y. M. Barigaddi, G. S. Gadaginamath, T. M. Aminabhavi
Center of Excellence in Polymer Science, Karnatak University, Dharwad 580 003, India

Received 8 June 2006; accepted 19 September 2006
DOI 10.1002/app. 25518
Published online 3 January 2007 in Wiley InterScience (www.interscience.wiley.com).

Abstract

Four novel polyurethanes (PUs) containing 2,6-bis(4-hydroxybenzylidene) cyclohexanone hard segments with four diisocyanate, namely, 4,4'-diphenylmethane diisocyanate, toluene 2,4-diisocyanate, isophorone diisocyanate, and hexamethylene diisocyanate, were prepared. Structural elucidation and thermal characterization of these PUs were done by Fourier transform infrared, UV, and fluorescence spectroscopy, ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$, and differential thermal analysis/thermogravimetric analysis. All of the PUs con-

tained domains of semicrystalline and amorphous structures as indicated by X-ray diffraction. PUs were soluble in polar aprotic solvents such as N-methyl-2-pyrrolidone, dimethylformamide, and dimethyl sulfoxide. Acoustic properties were calculated from the group contribution method. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 81-88, 2007

Key words: fluorescence; FT-IR; NMR; phase separation; polyurethanes

INTRODUCTION

Segmented polyurethane (PU) elastomers are used in a number of implantable medical devices. ${ }^{1,2}$ However, the majority of PUs and polyureas are insoluble in common organic solvents due to their rigid backbone structures; ${ }^{3,4}$ this prohibits their application due to difficulty in processing. To overcome these difficulties, the modification of their structures is necessary by the introduction of bulky or asymmetric groups on the pendant polymer backbone or the incorporation of noncoplanar structural units on the main polymer chain. ${ }^{5-8}$ In our earlier studies, ${ }^{9-11}$ we prepared Schiff-base PUs and azo-based diol-containing PUs with 2,2'-[ethane-1,2-diylbis(nitrilomethylylidene)] diphenol, 2,2'-[hexane-1,6-diylbis(nitrilomethylylidene)] diphenol, 4,4'-(ethane-1,2-diylidenedinitrilo) diphenol and $4,4^{\prime}$-(pentane-1,5-diylidene-dinitrilo) diphenol, 4, 4'-[1,4-phenylenedi-diazene-2,1-diyl] bis (2-carboxyphenol), and 4,4'-[1,4-phenylenedi-diazene-2,1-diyl] bis(2-chlorophenol) with different diisocyanates. In

[^0]Journal of Applied Polymer Science, Vol. 104, 81-88 (2007)
© 2007 Wiley Periodicals, Inc.
(3)WILEY

InterScience
continuation of these studies, we now propose the synthesis of PUs based on chalcone groups containing diols such as 2,6-bis(4-hydroxybenzylidene) cyclohexanone (BHBC) as hard segments with 4,4'-diphenylmethane diisocyanate (MDI), toluene 2,4-diisocyanate (TDI), isophorone diisocyanate (IPDI), and hexamethylene diisocyanate (HDI). Chalcones are an important class of natural/synthetic products belonging to the flavonoid family, and some of them possess a broad spectrum of biological activities. ${ }^{12-17}$ Chalcones are nontoxic and become biologically compatible when they are incorporated into the PU structure as a chain extender. Such PUs are useful in drug delivery and biomedical applications. The chalcone diol was prepared as per the published report. ${ }^{18}$ The structure of BHBC was established by Fourier transform infrared (FTIR) spectroscopy, ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectral data. The synthesized PUs were further characterized by ultraviolet-visible (UV-vis) spectroscopy, fluorescence, FTIR spectroscopy, ${ }^{1} \mathrm{H}-\mathrm{NMR}$, ${ }^{13} \mathrm{C}-\mathrm{NMR}$, differential thermal analysis (DTA)/thermogravimetric analysis (TGA), and X-ray diffraction techniques. The derived PUs were studied in terms of structure-morphology based considerations. Their acoustic properties were calculated from the group contribution method.

EXPERIMENTAL

Materials

MDI, TDI, IPDI, HDI, and dibutyltin diaurate were purchased from Aldrich (Milwaukee, WI) and were

2,6-Bis(4-hydroxybenzylidene)cyclohexanone
Scheme 1 Preparation of BHBC.
used without further purification. Cyclohexanone, p hydroxybenzaldehyde, xylene, ethyl methyl ketone, toluene, n-hexane, chloroform, tetrahydrofuran, dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N -methyl-2-pyrrolidone, dimethylacetamide, acetic acid, and hydrochloric acid were all are analytical-reagentgrade samples purchased from S. D. Fine Chemicals (Mumbai, India). All of the solvents were purified before use with standard procedures.

Preparation of BHBC

To a $500-\mathrm{mL}$, round-bottom flask containing methanol $(160 \mathrm{~mL})$ and fitted with a condensor and a mechanical stirrer, p-hydroxybenzaldehyde ($24.4 \mathrm{~g}, 0.2 \mathrm{~mol}$) and cyclohexanone ($11.4 \mathrm{~mL}, 0.1 \mathrm{~mol}$) were added. HCl gas was passed, and the reaction mixture was stirred at ambient temperature until the contents of the flask became dark pink. The contents of the flask were poured into a large quantity of distilled water, and the precipitate was filtered and dried in vacuo at $30^{\circ} \mathrm{C}$. Recrystallization of the product was done in methanol.
The product yield was 20.6 g (57%; $\mathrm{mp}=296-$ $98^{\circ} \mathrm{C}$. FTIR and NMR assignments of these compounds are given next:

FTIR (KBr, cm^{-1}): 3216, 2940, 2836,1652, 1571, 1541, 1508, 1434, 1376, 1303, 1242, 1162, 971, 922, 869, and 656. ${ }^{1} \mathrm{H}$-NMR [DMSO- d_{6}, tetramethylsilane (TMS), δ]: $1.72\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{CH}_{2}\right), 2.86(\mathrm{t}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}$, $3-\mathrm{CH}_{2}$ and $\left.5-\mathrm{CH}_{2}\right), 6.85(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}$, ortho-ArH to phenolic OH), $7.41(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$, ortho-ArH to $-\mathrm{CH}=), 7.55(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}=)$, and 9.93 (s, 2H, phenolic OH). ${ }^{13} \mathrm{C}$-NMR (DMSO- $\left.d_{6}, \delta\right): 22.97$ (C_{4} of cyclohexanone), 28.38 (C_{3} and C_{5} of cyclohexanone), 115.99 (ortho-Ar carbons to phenolic OH), 126.96 (Ar carbons
para to OH and linked to $-\mathrm{CH}=), 132.82\left(\mathrm{C}_{2}\right.$ and C_{6} of cyclohexanone), 133.81 (Ar carbons ortho to $-\mathrm{CH}=$), 136.19 (carbons of $=\mathrm{CH}-$), 158.75 (Ar carbons linked to -OH), and 188.97 (carbons of $-\mathrm{C}=\mathrm{O}$).
Scheme 1 displays the formation of BHBC based on the previously cited spectral assignments.

Polymer synthesis

A typical general procedure used to synthesize PUs was carried out in a three-necked $100-\mathrm{mL}$, roundbottom flask equipped with a magnetic stirrer, condenser, and dropping funnel under a nitrogen atmosphere. BHBC was dissolved in dry DMF under a dry nitrogen atmosphere with constant stirring. Then, an equimolar quantity of diisocyanate (MDI, TDI, IPDI, or HDI) with respect to the previous diol taken in dry DMF was added to this solution over a period of 1 h . The reaction mixture was stirred continuously for 8 h at $80^{\circ} \mathrm{C}$, cooled, poured into distilled water, and then filtered. The solid powder polymer obtained was washed with double-distilled water and dried under reduced pressure at $30^{\circ} \mathrm{C}$. The chemical structures of the obtained PUs are shown in Scheme 2.

Preparation of poly[2,6-bis(benzyliden-4-yl) cyclohexanone 4,4'-methylene diphenylene diurethane] (PU-1)

We prepared PU-1 with MDI ($2.0 \mathrm{~g}, 0.008 \mathrm{~mol}$) and BHBC ($2.4 \mathrm{~g}, 0.008 \mathrm{~mol}$) to yield $4.09 \mathrm{~g}(95 \%)$. FTIR and NMR assignments are given next:

where $R=$

Scheme 2 Reaction schemes for the formation of PU-1 to PU-4.

FTIR (KBr, cm^{-1}): 3398, 3030, 2914, 1647, 1594, 1542, 1435, 1409, 1304, 1281, 1163, 1146, 972, 838, and 758. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}, TMS, δ): $1.72\left(\mathrm{~m}, \mathrm{C}_{4}-\mathrm{CH}_{2}\right), 2.86$ $\left(\mathrm{m}, \mathrm{C}_{3}\right.$ and $\left.\mathrm{C}_{5}-\mathrm{CH}_{2}\right), 3.81\left(\mathrm{~s}, \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{Ar}\right), 6.70-7.50$ (m, ArH), 7.55 ($\mathrm{s}, \quad-\mathrm{CH}=$), and 9.93 (br, $-\mathrm{NH}-\mathrm{COO}-) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}, \delta\right): 22.55\left(\mathrm{C}_{4}\right.$ of cyclohexanone), 27.94 (C_{3} and C_{5} of cyclohexanone), $39.85\left(\mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{Ar}\right.$ carbon merged with DMSO- d_{6} methyl carbon peaks), 115.57 (Ar carbons ortho to $-\mathrm{O}-$), 118.39 (Ar carbons ortho to $-\mathrm{NH}-$), 126.51 (Ar carbons para to $-\mathrm{O}-$ and linked to $-\mathrm{CH}=$), 128.88 (Ar carbons ortho to $-\mathrm{CH}_{2}-$), $132.39\left(\mathrm{C}_{2}\right.$ and C_{6} of cyclohexanone), 133.41 (Ar carbons ortho to $-\mathrm{CH}=$), 134.94 (Ar carbons linked to $-\mathrm{CH}_{2}-$), 135.74 ($=\mathrm{CH}$ - carbons), 137.67 (Ar carbons linked to -NH-), 152.59 and 158.33 (Ar carbons linked to -O-), and 188.59 (carbonyl carbons of cyclohexanone and urethane carbonyl carbons).

Preparation of poly[2,6-bis(benzyliden-4-yl) cyclohexanone toluene 2,4-diurethane] (PU-2)

PU-2 was prepared with TDI ($1.4 \mathrm{~g}, 0.008 \mathrm{~mol}$) and BHBC ($2.4 \mathrm{~g}, 0.008 \mathrm{~mol}$) with a yield of $3.46 \mathrm{~g}(93 \%)$. FTIR and NMR assignments are given next:

FTIR (KBr, cm^{-1}): 3287, 2927, 2856, 1654, 1594, 1572, 1435, 1377, 1280, 1162, 971, 867, and 756. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}, TMS, δ): $1.72\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{CH}_{2}\right), 2.22$ $\left(\mathrm{s},-\mathrm{CH}_{3}\right), 2.86\left(\mathrm{~m}, \mathrm{C}_{3}\right.$ and $\left.\mathrm{C}_{5}-\mathrm{CH}_{2}\right), 6.70-7.40(\mathrm{~m}$, $\mathrm{Ar}-\mathrm{H}), 7.55(\mathrm{~s},-\mathrm{CH}=)$, and 9.94 (br, urethane NH$)$. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO- $\left.d_{6}, \mathrm{TMS}, \delta\right): 17.41\left(-\mathrm{CH}_{3}\right.$ carbons), $22.55\left(\mathrm{C}_{4}\right.$ of cyclohexanone), $27.96\left(\mathrm{C}_{3}\right.$ and C_{5} of cyclohexanone), 115.57 (Ar carbons ortho to $-\mathrm{O}-$ and $-\mathrm{NH}-$), 126.49 (Ar carbons linked to $-\mathrm{CH}=$ and para to $-\mathrm{O}-), 132.41\left(\mathrm{C}_{2}\right.$ and C_{6} of cyclohexanone and Ar carbons ortho to $-\mathrm{CH}_{3}$), 133.36 (Ar carbons ortho to $-\mathrm{CH}=$), 135.79 ($=\mathrm{CH}-$ carbons), 137.91 (Ar carbons linked to $-\mathrm{NH}-$), 158.36 (Ar carbons linked to -O-), and 188.56 (cyclohexanone and urethane carbonyl carbons).

Preparation of poly[2,6-bis(benzyliden-4-yl) cyclohexanone isophorone diurethane] (PU-3)

PU-3 was prepared with IPDI ($1.8 \mathrm{~g}, 0.008 \mathrm{~mol}$) and BHBC ($2.4 \mathrm{~g}, 0.008 \mathrm{~mol}$) to yield $3.90 \mathrm{~g}(95 \%)$. FTIR and NMR assignments are given next:

FTIR (KBr, cm^{-1}): 3364, 2954, 1720, 1652, 1598, 1434, 1384, 1277, 1234, 1159, 1067, 970, 838, and 761. ${ }^{1} \mathrm{H}-$ NMR (DMSO- d_{6}, TMS, δ): $0.86\left(\mathrm{~s},-\mathrm{CH}_{3}\right) ; 0.91$ (s , $\left.-\mathrm{CH}_{3}\right) ; 0.98\left(\mathrm{~s},-\mathrm{CH}_{3}\right) ; 1.05,1.48,1.51,1.70,2.88$ (isophorone methylene protons); 1.71 ($\mathrm{m}, \mathrm{C}_{4}-\mathrm{CH}_{2}$ of cyclohexanone); 2.72 (s, $\mathrm{CO}-\mathrm{NH}-\mathrm{CH}_{2}-$); 2.84 ($\mathrm{m}, \mathrm{C}_{3}$ and $\mathrm{C}_{5}-\mathrm{CH}_{2}$ of cyclohexanone); 5.55 (br, ring urethane NH protons except those H-bonded); 6.82 (d, $J=8.5 \mathrm{~Hz}$, ortho-ArH to $-\mathrm{O}-$); 7.40 (d, $J=8.5$ Hz , ortho- ArH to $-\mathrm{CH}=$); $7.53(\mathrm{~s},-\mathrm{CH}=)$; and 9.91 (br, urethane NH protons H-bonded). ${ }^{13} \mathrm{C}-\mathrm{NMR}$
(DMSO- d_{6}, TMS, δ): 22.54 (C_{4} of cyclohexanone); 27.10 $\left(-\mathrm{CH}_{3}\right.$ carbons); $27.59\left(-\mathrm{CH}_{3}\right.$ carbons); 29.90 ($-\mathrm{CH}_{3}$ carbons); 31.53, 35.02, 36.10, 39.18, 42.30, 47.11 (isophorone carbons); 46.64 ($-\mathrm{NH}-\mathrm{CH}_{2}$ - carbons); 115.56 (Ar carbons ortho to - $\mathrm{O}-$); 126.51 (Ar carbons para to $-\mathrm{O}-$ and linked to $-\mathrm{CH}=)$; $132.38\left(\mathrm{C}_{2}\right.$ and C_{6} of cyclohexanone); 133.40 (Ar carbons ortho to $-\mathrm{CH}=$); 135.75 ($-\mathrm{CH}=$ carbons); 158.32 (Ar carbons linked to -O-); and 188.59 (urethane carbonyl carbons and carbonyl carbons of cyclohexanone).

Preparation of poly[2,6-bis(benzyliden-4-yl) cyclohexanone hexamethylene 1,6-diurethane] (PU-4)

PU-4 was prepared with $\operatorname{HDI}(1.29 \mathrm{~g}, 0.008 \mathrm{~mol})$ and BHBC ($2.4 \mathrm{~g}, 0.008 \mathrm{~mol}$) to yield $3.51 \mathrm{~g}(97 \%)$. FTIR and NMR assignments are given next:

FTIR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3325, 2932, 2856, 1718, 1573, 1509, 1438, 1377, 1280, 1162, 1109, 1069, 971, 922, 837, and 763. ${ }^{1} \mathrm{H}-\mathrm{NMR} \quad\left(\mathrm{DMSO}_{-} d_{6}, \mathrm{TMS}, \quad \delta\right): \quad 1.24 \quad(\mathrm{~m}$, $\left.-\mathrm{NH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right), 1.35\left(\mathrm{~m},-\mathrm{NH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right.$ $\left.-\mathrm{CH}_{2}-\right), 2.86\left(\mathrm{~m}, \mathrm{C}_{3}\right.$ and $\mathrm{C}_{5}-\mathrm{CH}_{2}$ of cyclohexanone), $2.96\left(\mathrm{~m},-\mathrm{NH}-\mathrm{CH}_{2}-\right), 5.75$ (br, urethane NH protons except those H-bonded), 6.84 (d, $J=8.5 \mathrm{~Hz}$, ortho-ArH to $-\mathrm{O}-), 7.41(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, ortho-ArH to $-\mathrm{CH}=), 7.55(\mathrm{~s},-\mathrm{CH}=)$, and 9.93 (br, urethane NH protons H-bonded). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO- $d_{6}, \mathrm{TMS}, \delta$): 22.86 (C_{4} of cyclohexanone), $25.90\left(-\mathrm{NH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right.$ carbons), $29.63\left(\mathrm{C}_{3}\right.$ and C_{5} of cyclohexanone), 30.07 ($-\mathrm{NH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\underline{\mathrm{CH}} \mathrm{H}_{2}-$ carbons), 38.88 (-NH $-\mathrm{CH}_{2}-$ carbons), 116.02 (Ar carbons ortho to $-\mathrm{O}-$), 126.94 (Ar carbons linked to $-\mathrm{CH}=$ and para to -O-), $132.85\left(\mathrm{C}_{2}\right.$ and C_{6} of cyclohexanone), 133.89 (Ar carbons ortho to $-\mathrm{CH}=$), $136.36(=\mathrm{CH}-$ carbons), 158.59 (Ar carbons linked to $-\mathrm{O}-$), and 189.55 (urethane carbonyl carbons and carbonyl carbons of cyclohexanone).

Scheme 2 displays the chemical reactions for the formation of the different PUs.

Characterization

The melting temperatures (T_{m} 's) of the monomers were determined in open capillary tubes. UV-vis spectra (Secomam, France) and fluorescence spectra (F-2000, Hitachi, Japan) were recorded for the monomer and the PUs in DMF. FTIR spectra were recorded on a PerkinElmer 881 spectrophotometer (Madison, WI). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectra in CDCl_{3} or DMSO- d_{6} were recorded on a Bruker $300-\mathrm{MHz}$ NMR spectrophotometer (Silberstreifen, Rheinstetten, Germany). Chemical shifts (δ) were taken with TMS as a reference liquid. TGA and DTA were recorded on a PerkinElmer diamond analyzer (Shelton, CT) from ambient temperature to $1000^{\circ} \mathrm{C}$ under a nitrogen gas flow rate of $100 \mathrm{~mL} / \mathrm{min}$. A sample weighing about $5-11 \mathrm{mg}$ was placed in a platinum crucible, and

TABLE I
Absorption and Emission Peaks for the Monomer and Different PUs

Name	Absorption $\lambda_{\max }{ }^{*}(\mathrm{~nm})$	Emission $\lambda_{\max }(\mathrm{nm})$
BHBC	310,369	466
PU-1	321,386	464
PU-2	309,368	465
PU-3	318,389	462
PU-4	317,364	466

* $\lambda_{\text {max }}=$ absorption or emission maximum wavelength.

DTA/TGA runs were recorded with α-alumina at a heating rate of $10^{\circ} \mathrm{C} / \mathrm{min}$. X-ray diffractograms of the PUs were recorded with a Rigaku Geigerflex diffractometer (Tokyo) equipped with Ni-filtered $\mathrm{Cu} \mathrm{K} \alpha$ radiation ($\lambda=1.5418$ A). Dried PUs were spread on a sample holder, and diffractograms were recorded in the 2θ angle range of $5-50^{\circ}$ at a speed of $5^{\circ} / \mathrm{min}$.

RESULTS AND DISCUSSION

The PUs of this study were novel, and all were obtained in quantitative yields. Because BHBC was incorporated, their physical, chemical, and thermal properties were substantially different than those containing aliphatic chains.

Figure 1 Representative FTIR spectra of the BHBC-based PUs (PU-1, PU-2, PU-3, and PU-4).

Solubility properties

All of the PUs were soluble in polar aprotic solvents such as N-methyl-2-pyrrolidone, dimethylacetamide, DMF, DMSO and acidic solvents such as m-cresol and concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$, but were insoluble in water, acetone, methanol, tetrahydrofuran, carbon tetrachloride, ethyl acetate, dioxane, xylene, ethyl methyl ketone, toluene, n-hexane, chloroform, and carbon disulfide.

Spectral data

UV-vis and fluorescence spectra of the chalconebased monomer and PUs were determined with DMF solvent at ambient temperature. The absorption and emission spectral data of both the monomer and the PUs are listed in Table I. Both diol and the PUs showed two absorption bands in the regions 309-321 and $368-389 \mathrm{~nm}$, which are attributed to the $\pi-\pi^{*}$ transitions of benzene and chalcone, respectively. Emissions from the monomer and the PUs were seen around $462-464 \mathrm{~nm}$ on excitation at 310 and 370 nm , respectively. From the absorption and emission spectra, we concluded that there was no significant difference in the monomer and the PUs.

Structures of both the monomer and PUs were characterized by NMR and FTIR; of these, the FTIR spectra showed the disappearance of both the phenolic hydroxyl group and the isocyanate group as well

Figure $2{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of BHBC and PU-1 to PU-4.

Figure $3{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of BHBC and PU-1 to PU-4
as the formation of several characteristic stretching vibrations due to $\mathrm{N}-\mathrm{H}, \mathrm{C}=\mathrm{O}$ and $\mathrm{C}-\mathrm{H}$ bonds, all shown in Figure 1. In all the PUs, sharp bands appearing between 3287 and $3364 \mathrm{~cm}^{-1}$ are due to the presence of hydrogen-bonded $\mathrm{N}-\mathrm{H}$ groups. However, the hydrogen-bonded broad carbonyl groups of urethane are evident in the region 1647$1720 \mathrm{~cm}^{-1}$.
NMR analysis revealed the disappearance of -OH and -NCO groups and the formation of a urethane polymer chain. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of the PUs showed characteristic signals, as displayed in Figure 2. Resonance peaks observed in the region $0.86-3.81 \mathrm{ppm}$ correspond to methyl/methylene/isophorone/cyclohexanone protons of the monomer and the PUs. The resonance peaks of the $-\mathrm{NH}-\mathrm{COO}$ - protons of all of the PUs appeared in the region 9.91-9.94 ppm, except for those of IPDI and HDI-based polymers. In IPDI and HDI-based PUs, - $\mathrm{NH}-\mathrm{COO}-$ protons are also observed around $5.55-5.75 \mathrm{ppm}$, which are in conformity with an earlier report, ${ }^{19}$ but in the monomer, -OH protons are found around 9.93 ppm .

Aromatic protons show signals between 6.70 and 7.50 ppm .
${ }^{13} \mathrm{C}$-NMR spectra of all of the PUs showed characteristic signals, as displayed in Figure 3. The chemical shifts ranging from $\delta=17.41$ to $\delta=47.11$ are due to aliphatic, cyclohexanone, and isophorone carbons. Resonance signals observed in the region between 115.56 and 158.75 ppm are due to aromatic carbons. Peaks observed in the region from 188.56 to 189.55 ppm are ascribed to urethane carbonyl carbons and carbonyl carbons of cyclohexanone.

Thermal properties

The thermal behavior of all of the PUs was studied in a nitrogen atmosphere with DTA/TGA. These data are presented in Tables II and III, whereas the curves are displayed in Figures 4 and 5, respectively. The existence of multiple endotherms has been documented on the thermal characteristics of the segmented PU block copolymers. ${ }^{20-22}$ Koberstein and Galambos ${ }^{23}$ suggested that the origin of multiple endotherms in

TABLE II
Different Melting Endotherms from DSC and the Group Contribution Method for the PUs

Code	$T_{1}\left({ }^{\circ} \mathrm{C}\right)$	$T_{2}\left({ }^{\circ} \mathrm{C}\right)$	$T_{3}\left({ }^{\circ} \mathrm{C}\right)$	T_{g} from van Krevelen ${ }^{27}$	T_{m} from van Krevelen ${ }^{27}$
PU-1		283	364	142	360
PU-2	159	254	281	159	368
PU-3	184	260	326,339	123	410
PU-4		240,262	362	162	365

PUs is dependent on the specimen preparation procedure. Martin et al. ${ }^{24}$ suggested that five endotherms observed were possibly due to the melting of various hard-segment-length populations. On the other hand, van Bogart et al. ${ }^{25}$ identified three endothermic transitions associated with the ordering of MDI/BDO (1,4butanediol) hard segments in materials subjected to the third thermal cycle. Blackwell and Lee ${ }^{26}$ studied multiple melting in MDI-based PUs that were oriented and thermally annealed. Recently, Raghu and coworkers ${ }^{9-11}$ observed two to five endothermic transitions associated with hard-segmented PUs and polyureas. In the light of these reports, it is obvious that the melting behavior of PUs is highly dependent on the procedure adopted for PU preparation. Indeed, the origin of multiple melting peaks are inherently different for materials prepared under varying conditions.

In this study, we observed multiple melting phenomena in identical PUs prepared from only hard segments in the main chain. In all of the PUs, the glass-transition temperature $\left(T_{\mathrm{g}}\right)$ was not clear due to the presence of alternative hard segments. Differential scanning calorimetry (DSC) of PU-1 showed two endothermic peaks, whereas PU-2 and PU-4 showed three endothermic peaks, and PU-3 showed four endothermic peaks. In the DSC of PU-1, the lowest endotherm $\left(T_{1}\right)$ was not clear due to the restructuring of hard-segment units within the hard microdomains. An intermediate-temperature endotherm $\left(T_{2}\right)$ was observed at $283^{\circ} \mathrm{C}$, which was associated with the destruction of long-range order of an unspecified na-
ture of the hard-segment part of the PUs. The higher temperature endotherm (T_{3}) observed at $364^{\circ} \mathrm{C}$ was ascribed to the melting of microcrystalline regions within the hard microdomains. In PU-2, T_{1}, observed at $159^{\circ} \mathrm{C}$, was due to local restructuring of the hardsegment units within the hard microdomains. T_{2}, observed at $254^{\circ} \mathrm{C}$, was related to the melting of microcrystalline regions within the hard microdomains. T_{3} was observed at $281^{\circ} \mathrm{C}$. In PU-3, T_{1} had two small peaks at $184^{\circ} \mathrm{C}$ due to the local restructuring of hard-segment units within the hard microdomains, whereas T_{2} displayed two peaks, one at $260^{\circ} \mathrm{C}$ and another at $326^{\circ} \mathrm{C}$. The melting of microcrystalline regions within the hard microdomain $\left(T_{3}\right)$ was also observed at $339^{\circ} \mathrm{C}$. In PU-4, T_{1} was not clear due to the restructuring of the hard-segment units within the hard microdomains. T_{2} was observed at $262^{\circ} \mathrm{C}$ and was associated with the destruction of long-range order of an unspecified nature. T_{3} observed at $362^{\circ} \mathrm{C}$ was ascribed to the melting of microcrystalline regions within the hard microdomains.

With procedures suggested by van Krevelen, ${ }^{27}$ we calculated the T_{g} and T_{m} values of the PUs to correlate them with the experimental data shown in Table II. The calculated T_{g} and T_{m} values are in the ranges $132-162$ and $360-410^{\circ} \mathrm{C}$, respectively. We, therefore, concluded that the calculated T_{g} of the hard-segmented PUs is in a higher range than $132^{\circ} \mathrm{C}$, and similarly, the calculated T_{m} of the hard-segmented PUs was observed in a range higher than $360^{\circ} \mathrm{C}$.

TABLE III
Thermal Properties of the PUs as Obtained from TGA

| | Decomposition
 temperature $\left({ }^{\circ} \mathrm{C}\right)$ | Major
 weight loss | Residual
 weight loss at
 $T_{10}{ }^{\mathrm{a}}$ | $T_{50}{ }^{\mathrm{b}}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |\quad| $700^{\circ} \mathrm{C}(\%)^{\mathrm{c}}$ |
| :---: |\quad| Onset |
| :---: |
| transition $\left({ }^{\circ} \mathrm{C}\right)$ |

[^1]

Figure 4 DSC thermograms of PU-1 to PU-4.

Weight loss data from TGA of all of the PUs are presented in Table III. These results suggest that 25 and 50% weight losses occurred in the temperature range $281-346$ and $323-368^{\circ} \mathrm{C}$, respectively. The PUs showed an onset temperature range from 260 to $327^{\circ} \mathrm{C}$. The curves showed a major weight loss between 222 and $420^{\circ} \mathrm{C}$, but the residual weight remain-

Figure 5 TGA tracings of PU-1 to PU-4.
ing at $700^{\circ} \mathrm{C}$ was from 4 to 21%. This variation in weight loss is due to differences in the structures of the hard segments of the PUs. TGA data indicated that MDI-based PUs exhibited better thermal stability than the other discarnate-based PUs. This was attributed to the presence of a biphenyl ring on the main PU chains.

X-ray diffraction

X-ray diffraction curves of the PUs are shown in Figure 6. The semicrystalline form of the hard segments seem to depend on their structures and on the crystallization conditions. All the PUs displayed a semicrystalline nature, which followed the sequence PU-2 $>$ PU-1 $>$ PU-4 $>$ PU-3. These results are in good agreement with our previous reports. ${ }^{9-11}$ This could be due to variations in the unsaturated nature of the monomer.

Acoustic properties

The acoustic properties of PUs are important in the prediction of their properties in practical applications, particularly in applications as foam materials. The speeds of longitudinal and transverse (shear) ultrasonic waves can be predicted with two additive molar functions, namely, the Rao function $\left(U_{R}\right)$ and the Hartmann function $\left(U_{H}\right)$. From these, four important elastic parameters, namely, bulk modulus (K), shear

Figure 6 X-ray diffractograms of PU-1 to PU-4.

TABLE IV
Elastic Parameters of the PUs Calculated from the Group Contribution Method ${ }^{27}$

Code	U_{R}	U_{H}	$K\left(\times 10^{9} \mathrm{~N} / \mathrm{m}^{2}\right)$	$G\left(\times 10^{9} \mathrm{~N} / \mathrm{m}^{2}\right)$	$E\left(\times 10^{9} \mathrm{~N} / \mathrm{m}^{2}\right)$	v
PU-1	27,970	22,475	3.47	0.930	2.560	0.37
PU-2	26,790	21,490	6.44	1.715	4.725	0.37
PU-3	26,280	18,565	3.35	0.416	1.198	0.44
PU-4	24,170	19,250	3.76	0.960	2.655	0.38

modulus (G), Young's modulus (E), and the Poisson ratio (v) were calculated ${ }^{27}$ with eqs. (1)-(4):

$$
\begin{gather*}
K=\rho\left(U_{R} / V\right)^{6} \tag{1}\\
G=\rho\left(U_{H} / V\right)^{6} \tag{2}\\
E=3 G /(1+G / 3 K) \tag{3}\\
v=(0.5-G / 3 K) /(1+G / 3 K) \tag{4}
\end{gather*}
$$

where ρ is the density and V is the additive molar volume of the polymer, which was calculated by the group contribution method suggested by van Krevelen. ${ }^{27}$ The calculated results are presented in Table IV. Both ρ and V were considered additive quantities.

CONCLUSIONS

Novel PUs based on BHBC with MDI, 2,4-TDI, IPDI, and HDI were synthesized. The structures of the monomer and the PUs were confirmed by UV-vis spectroscopy, fluorescence, and FTIR spectroscopy in addition to NMR studies. All of the PUs were soluble in polar aprotic solvents and exhibited fluorescent properties. TGA indicated that the onset temperature of all of the PUs was higher than $244^{\circ} \mathrm{C}$, whereas the curves showed major weight losses between 249 and $484^{\circ} \mathrm{C}$. DSC displayed multiple endotherms that were in good agreement with the reported data. The semicrystalline and amorphous nature of the developed PUs was confirmed by X-ray diffraction. The acoustic properties of the PUs were in the range observed for other similar types of polymers. We believe that the novel types of PUs developed in this research may have applications in the production of membranes in separation science and drug delivery. Efforts in this direction are underway.

References

1. Lambda, N. M. K.; Woodhouse, K. A.; Cooper, S. L. Polyurethanes in Biomedical Applications; CRC: Boca Raton, FL, 1998.
2. Vermette, P.; Griesser, H. J.; Laroche, G.; Guidoin, R. Biomedical Applications of Polyurethanes; Eureka Com: Georgetown, TX, 2001.
3. Raghu, A. V.; Gadaginamath, G. S.; Aminabhavi, T. M. J Appl Polym Sci 2005, 96, 2236.
4. Raghu, A. V.; Gadaginamath, G. S.; Mallikarjuna, N. N.; Aminabhavi, T. M. J Appl Polym Sci 2006, 100, 576.
5. Yang, C. P.; Hsiao, S. H.; Lin, J. H. J Polym Sci Part A: Polym Chem 1993, 31, 2995.
6. Lee, H. J.; Lee, M. H.; Oh, M. C.; Han, S. G. Polym Bull 1999, $42,403$.
7. Chen, J. P.; Natansohn, A. Macromolecules 1999, 32, 3171.
8. Akimoto, S.; Jikei, M.; Kakimoto, M. High Perform Polym 2000, 12, 197.
9. Raghu, A. V.; Gadaginamath, G. S.; Halligudi, S. B.; Aminabhavi, T. M. J Polym Sci Part A: Polym Chem 2006, 44, 6032.
10. Raghu, A. V.; Gadaginamath, G. S.; Mathew, N. T.; Halligudi, S. B.; Aminabhavi, T. M. React Funct Polym, submitted.
11. Raghu, A. V.; Gadaginamath, G. S.; Mathew, N. T.; Halligudi, S. B.; Aminabhavi, T. M. React Funct Polym, submitted.
12. Dhar, D. N. The Chemistry of Chalcones and Related Compounds; Wiley-Interscience: New York, 1981.
13. Dimmock, J. R.; Elias, D. W.; Beazely, M. A.; Kandepu, N. M. Curr Med Chem 1999, 6, 1125.
14. Kidwai, M.; Sapra, P.; Misra, P.; Saxena, R. K.; Singh, M. Bioorg Med Chem 2001, 9, 217.
15. Ballesteros, J. F.; Sanz, M. J.; Ubeda, A.; Miranda, M. A.; Iborra, S.; Paya, M.; Alcaraz, M. J. J Med Chem 1995, 38, 2794.
16. Lin, Z.; Ming, C.; Jens, B.; Thor, T. G.; Soren, B. C.; Arlasan, K. J Antimicrob Chemother 1999, 43, 793.
17. Chen, M.; Christensen, S. B.; Zhai, L.; Rasmussen, M. H.; Theander, T. G.; Frokjaer, S. J Infect Dis 1997, 176, 1327.
18. Arun, A.; Reddy, B. S. R. J Appl Polym Sci 2004, 92, 2494.
19. Prabhakar, A.; Chattopadhyay, D. K.; Jagadeesh, B.; Raju, K. V. S. N. J Appl Polym Sci Part A: Polym Chem 2005, 43, 1196.
20. Seymour, R. W.; Cooper, S. L. Macromolecules 1973, 6, 48.
21. Hesketh, T. R.; van Bogart, J. W. C.; Copper, S. L. Polym Eng Sci 1980, 20, 190.
22. Jacques, C. H. M. In Polymer Alloys; Klempner, D. K.; Frisch, K. C., Eds.; Plenum: New York, 1977; p 287.
23. Koberstein, J. T.; Galambos, A. F. Macromolecules 1992, 25, 5618.
24. Martin, D. J.; Meijs, G.; Fgunatillake, P. A.; McCarthy, S. J.; Renvvick, G. M. J Appl Polym Sci 1997, 64, 803.
25. van Bogart, J. W. C.; Bluemke, D. A.; Cooper, S. L. Polymer 1981, 22, 1428.
26. Blackwell, J.; Lee, C. D. J Polym Sci Polym Phys Ed 1984, 22, 769.
27. van Krevelen, D. W. Properties of Polymers; Elsevier: New York, 1990.

[^0]: This article is Center of Excellence in Polymer Science communication 148.
 This article is a part of M.S. project work done by G. Anita and Y. M. Barigaddi under the guidance of G. S. Gadaginamath and A. V. Raghu.
 Correspondence to: T. M. Aminabhavi (aminabhavi@yahoo. com).
 Contract grant sponsor: University Grants Commission, New Delhi, India for major support to establish the Center of Excellence in Polymer Science; contract grant number: F1-41/2001/CPP-II.

[^1]: ${ }^{\text {a }}$ Temperature at which 10% weight loss was observed by TGA.
 ${ }^{\mathrm{b}}$ Temperature at which 50% weight loss was observed by TGA.
 ${ }^{\text {c }}$ Residual weight loss observed by TGA at $700^{\circ} \mathrm{C}$ in N_{2}.

